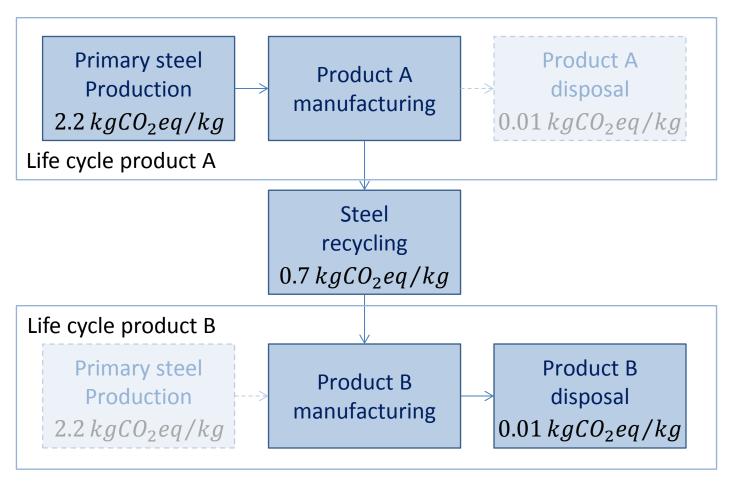


Circular economy: Some notes on closing the loop

Roland Geyer, Associate Professor

Bren School of Environmental Science and Management
University of California,
Santa Barbara, CA 93106, USA

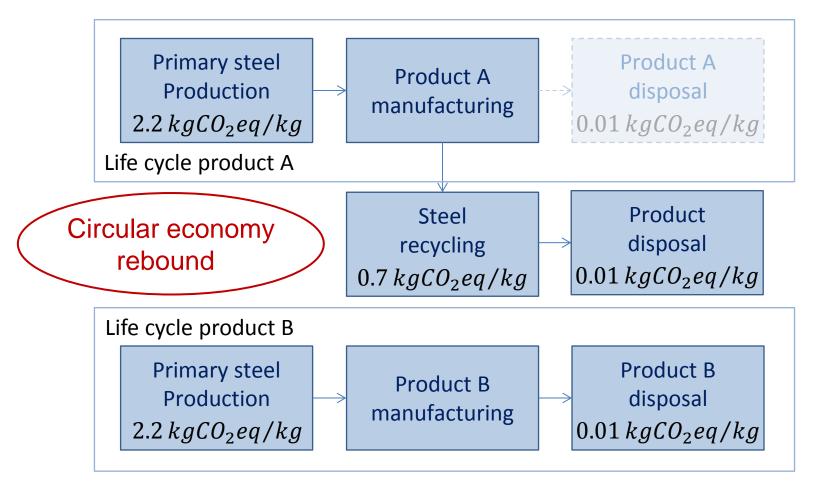
Why do we reuse or recycle?



Total GHGs: $4.4 kgCO_2 eq$ GHG intensity: $2.2 kgCO_2 eq/kg$

Because it can avoid primary production and disposal processes!

Total GHGs: $2.9 kgCO_2 eq$

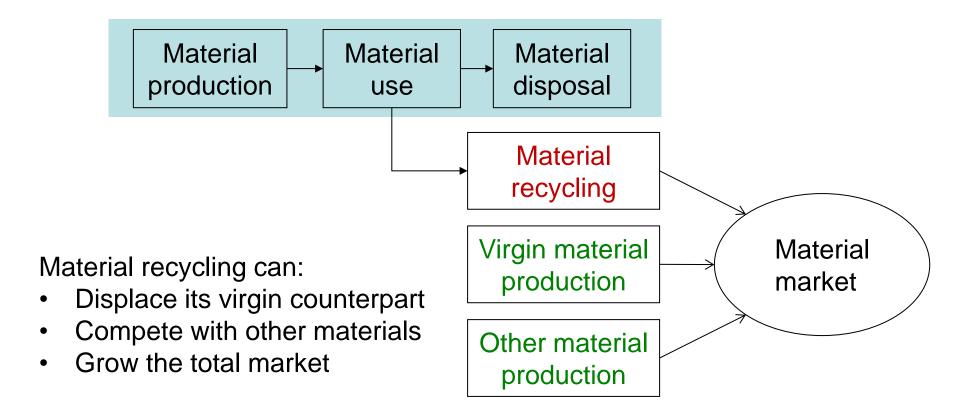

(34% reduction)

GHG intensity: $1.45 kgCO_2 eq/kg$ (34% reduction)

Without <u>displaced primary production</u>, recycling increases total impacts!

Total GHGs: $5.1 kgCO_2 eq$

(16% increase)


GHG intensity: $1.7 kgCO_2eq/kg$

(23% reduction)

Displaced primary production is market-mediated!

It is frequently assumed that closed-loop recycling is intrinsically preferable to open-loop recycling...

What is closed-loop recycling? The typical definition is:

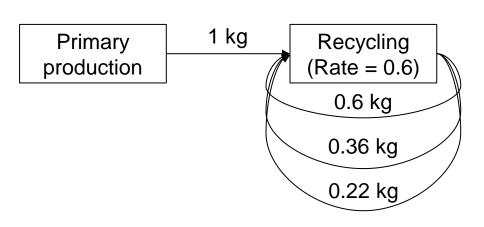
"Material from a product system is recycled in the same product system"

"Same" has two meanings:

- The very one previously referred to
- Similar in kind, quality, quantity, or degree

There are 3 misconceptions about closed-loop recycling:

- Quantity argument: It generates more secondary resource from each unit of primary resource.
- 2. Quality argument: Even per recycled unit, it is environmental preferable to open-loop recycling.
- 3. The distinction between closed and open loops is useful.


Misconception 1: Closed loops generate more secondary resource

1 loop

Primary 1 kg Recycling (Rate = 0.6)

0.6 kg

3 loops

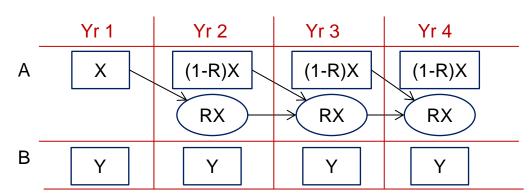
What's wrong with this perspective?

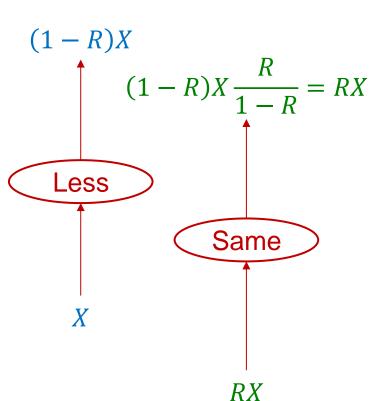
$$S = P + PR + PR^{2} + PR^{3} + \dots + PR^{n} = P \frac{(R - R^{n+1})}{(1 - R)}$$
$$n \to \infty \Rightarrow S = P \frac{R}{1 - R}$$

P: Amount of primary material

S: Amount of secondary material obtained from P

R: Recycling rate


n: Number of recycling cycles

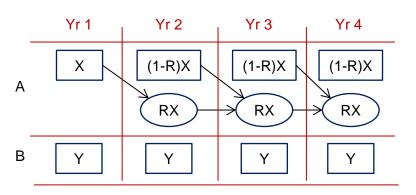


Closed-loop recycling also reduces the amount of primary material available for recycling!

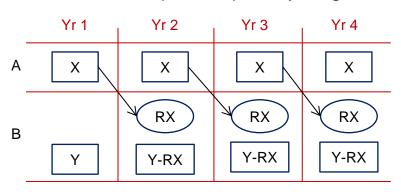
Closed-loop Recycling

Primary Recycled feedstock material per year per year

Open-loop Recycling


٨	Yr 1	Yr 2	Yr 3	Yr 4
A	X	X	X	X
В		RX	RX	RX
	Y	Y-RX	Y-RX	Y-RX

Misconception 2: Closed-loop recycling is environmentally preferable


Closed-loop Recycling

Annual Environmental Benefits

$$RX(E_{prim_A} + E_{landfill_A} - E_{repro_{AA}})$$

Open-loop Recycling

$$RX(E_{prim_B} + E_{landfill_A} - E_{repro_{AB}})$$

The closed-loop scenario has higher environmental benefits than the open-loop scenario if

$$(E_{prim_A} - E_{repro_{AA}}) > (E_{prim_B} - E_{repro_{AB}})$$

The only thing that matters is the difference between avoided burden and reprocessing burden

Example: Recycling 1kg of used lubricant oil (UO)

<u>Closed-loop</u>: Re-refining 1kg of UO into 650g base oil (and some co-products)

$$E_{ReRe} - E_{prim_{ReRe}} = (0.4 - 0.9) \frac{kgCO_2e}{kg\ UO} = 0.5 \frac{kgCO_2e}{kg\ UO}$$

Open-loop: Energy recovery by recycling 1kg UO into 910g recycled fuel oil (RFO)

Scenario: RFO displaces only heavy fuel oil

$$E_{RFO} - E_{prim_{HFO}} = (2.8 - 3.4) \frac{kgCO_2e}{kg\ UO} = \mathbf{0.6} \frac{kgCO_2e}{kg\ UO}$$

Scenario 2: RFO displaces heavy fuel oil and natural gas

$$E_{RFO} - E_{prim_{HFO \& nat gas}} = (2.8 - 3.1) \frac{kgCO_2 e}{kg UO} = 0.3 \frac{kgCO_2 e}{kg UO}$$

Misconception 3: Closed-loop recycling is a meaningful concept

Definition:

"Material from a product system is recycled in the same product system"

Problem 1:

What kind of similarity is required for a loop to be closed?

Problem 2:

How similar do the supplying and receiving product systems need to be for the loop to be closed?

Example 1: Is bottle-to-bottle recycling closed loop?

Example 2:

Is automotive aluminum recycling closed-loop?

Conclusions

Circular economy policy should *not* be guided by

- Number of loops
- Aiming for closed-loop recycling

Instead, it should be guided by the following questions:

- What and how much primary product, material, or fuel does a circular economy activity displace?
- Which circular economy activities have the highest displacement potential, measured in total net environmental impact that can be avoided?

Ongoing Research Grant:

Displaced Production Due to Reuse and Recycling: Theory Development and Case Studies National Science Foundation CBET #1335478 Roland Geyer, Richard Startz, Trevor Zink

Further Reading:

Zink et al. (2015) A Market-Based Framework for Quantifying Displaced Production from Recycling or Reuse, Journal of Industrial Ecology, published online, DOI: 10.1111/jiec.12317

Geyer et al. (2015) Common Misconceptions about Recycling, Journal of Industrial Ecology, published online, DOI: 10.1111/jiec.12355

Geyer et al. (2015) Assessing the Greenhouse Gas Savings Potential of Extended Producer Responsibility for Mattresses and Boxsprings in the United States, Journal of Industrial Ecology, published online, DOI: 10.1111/jiec.12313

Geyer et al. (2013) Life Cycle Assessment of Used Oil Management in California - Pursuant to Senate Bill 546 (Lowenthal), CalRecycle Report DRRR-2013-01465, http://www.calrecycle.ca.gov/Publications/Detail.aspx?PublicationID=1465

